

FUTURE CHALLENGES AND INDUSTRIAL ADOPTION STRATEGIES FOR STRUCTURAL SUPERCAPACITORS

E. S. Greenhalgh^{1*}, M. S. P. Shaffer², A. Kucernak², D. B. Anthony^{1,2}, E. Senokos², S. Nguyen¹, F. Pernice¹, G. Zhang², G. Qi¹, K. Balaskandan^{1,2}, M Valkova^{1,2}.

Department of Aeronautics, Imperial College London, UK
 Department of Chemistry, Imperial College London, UK
 * Corresponding author (e.greenhalgh@imperial.ac.uk)

Imperial College London, UK www.imperial.ac.uk/composites-centre/
August 2019

Content

- Introduction and Motivation
- Structural Supercapacitors Imperial College Research
- Future Challenges
 - Multifunctional Design
 - Scale-up and Fabrication
 - Encapsulation
 - Certification and Predictive Modelling
 - In-service Conditions
- Potential Adoption Routes
- Conclusions
- Acknowledgements

Going beyond Smart Materials....

- Conventional reductionalist design approach maximise efficiency of individual subcomponents.
 - ⇒ Difficult compromises;
 - ⇒ Limiting technological advance and stifling innovative design.
- Different *holistic* approach; structures and materials which simultaneously perform more than one function.

Smart (Multifunctional Structures)...

Implanting of secondary materials or devices within a parent laminate to imbue additional functionality...

 \Rightarrow e.g. embedding devices within structural materials

Multifunctional Materials....

Constituents synergistically and holistically perform two very different roles....

⇒ e.g. a nanostructured carbon lattice carrying mechanical load whilst intercalating lithium ions for electrical energy storage

J. P. Thomas & M. A. Qidwai, JOM. v57 p18-24. 2005.

Jacques E., et.al, Electrochemistry
Communications, Volume 35, 2013, Pages 65-67.

Motivation for Multifunctional Materials

- We can now tailor composite properties beyond purely the mechanical perspective.
 - ⇒ New and diverse functionalities being added.
- Multifunctional composite materials has potential to revolutionize transportation, portable electronics and infrastructure.
- Focus of this paper is structural supercapacitors:
 - ⇒ Carry mechanical loads whilst storing and delivering electrical energy.

Objectives:

- ⇒ Overview of the structural supercapacitor research at Imperial College London;
- ⇒ Outline the near and medium-term challenges for these new materials;
- ⇒ Suggest industrial adoption strategies.

The car's body panels serve as a battery

Multifunctional structural power concept (Volvo Cars)

Motivation – Example (E-Fan)

What electrical performance of the Structural Power Composite (SPC) is required to exceed the performance (i.e. 60 min endurance) of the conventional system (i.e. load-bearing structure + batteries)?

	Scenario	Aircraft Mass (kg)	Specific Energy (Wh/kg)	Specific Power (W/kg)	
Impe	Remove battery, SPC to provide energy (i.e. reduce aircraft weight).	333	87	310	
	Remove battery, replace with SPC (i.e. aircraft weight maintained)	500	71	179	
Lond	o n				

Ion permeable Separator (Insulator) Current collector (Electrode)

Supercapacitor Device

Electrolyte

Conventional

Supercapacitor

Research Streams

Constituent

development

Electrochemical characterisation

1/(Stiffness)

0.002

Electrical &

mechanical

characterisation

Reinforcement Development

 $WD = 6.0 \, mn$

Carbon aerogels possess much higher specific surface areas compared to carbon fibres.

Also high stiffness which is beneficial to the mechanical performance:

- Active materials for electric double layer capacitors
- Scaffold/current collectors for redox active materials: reducing dead weight

CAG coating of CFs and detailed microstructure

Structural Electrolyte Development

Aspirational multifunctional electrolyte:

- Ionic conductivity 1 mS/cm;
- Young's Modulus 1 GPa.

Form a bicontinuous structure with one phase responsible for providing mechanical strength while another ensures ionic conductivity.

University

Device Fabrication and Assembly

- (a) Infuse individual CF lamina with CAG precursor;
- (b) Pyrolyse individual lamina to form the CF/CAG;
- (c) Wash CF/CAG lamina;
- (d) Assemble device to produce CF/Sep/CF laminate;
- (e) Infuse laminate with multifunctional matrix & cure.

Summary of semi-structural & MF cell performance

Electrodes	Separator	Electrolyte	C (F)	m (g)	V (V)	ESR (Ω)	C* (F/g)	E* (Wh/kg)	P* (kW/kg)
CAG CF 43 gsm	Woven GF (242 μm)	EMI-TFSI	0.68	0.91	2.7	2.66	0.8	0.8	0.8
CAG CF 43 gsm	PET/ceramic (23 μm)	EMI-TFSI	1.01	0.36	2.7	1.49	3.1	3.2	3.4
CAG CF 43 gsm	Woven GF (50 μm)	MF (40%)	0.34	0.39	2.7	7.45	0.9	0.9	0.6
CAG CF 43 gsm	PET/ceramic (23 μm)	MF (40%)	0.51	0.36	2.7	4.80	1.4	1.4	1.1
Maxwell BCAP0150¹, length = 50 mm, dia. = 25 mm				32	2.7	14 mΩ	4.7	4.7	4.1

Conventional supercapacitor Γ=4.7Wh/kg & P=4.1kW/kg

*Normalised to active mass

C arbon fabrics 138 mg
A erogel 62 mg
S eparator (PC) 53 mg
E lectrolyte 107 mg

Future Challenges – Multifunctional Design

- Conventional design approach
 - ⇒ Implement new properties and then characterize how the improved performance compares to that of the COTS (Current Off The Shelf) for the same function.
- However, structural power material cannot...
 - ⇒ Offer better mechanical load-carrying capability than a fully optimized conventional structural material
 - ⇒ Offer better electrochemical performance than a conventional battery or supercapacitor.
- Taking a holistic view during design is vital
 - ⇒ Structural power materials partially undertake the role of both the structural components (e.g. spars or skins) and the energy storage (e.g. battery, supercapacitor, etc.);
 - ⇒ Hence a system approach to design, rather than the conventional compartmentalized approach, should be followed.
- Structural Power Materials also offer
 - ⇒ Localization of power sources (i.e. reducing wiring)
 - ⇒ Opportunities to tailor mass distribution across a platform.
- Need to capture this within a new design methodology

Future Challenges – Scale-Up and Fabrication

- Fabrication methodologies for structural power materials very different to conventional approaches.
- Melding of polymer composite manufacture and electrochemical device fabrication.
 - \Rightarrow Any exposure of the matrix/electrolyte to ambient moisture is critical to electrochemical performance.
 - ⇒ 'Moisture-free' composite fabrication required
- Fabrication of curved components present additional challenges:
 - ⇒ Currently being addressed through the development of masking of fold lines/barriers, to permit monofunctional and multifunctional domains.
 - ⇒ Investigating as a route to achieve continuity of carbon-fibres across monofunctional/multifunctional boundaries.

Future Challenges - Encapsulation

- Critical near-term challenge is how to encapsulate the structural power material.
- Isolate from the surrounding systems, conventional structure, and ultimately the environment, whilst still transferring mechanical load across the monofunctional/multifunctional interfaces.
- Conventional energy storage devices are encased in inert, insulating sheaths.
- Electrolyte phase (Ionic liquid) is leached out by the uncured epoxy, leading to considerable loss of electrical performance.

Future Challenges – Certification & Predictive Modelling

fibre electrodes

- Most significant hurdle is that of certification, particularly for aerospace applications.
 - ⇒ Conventional structural materials are required to demonstrate airworthiness through the "Rouchon pyramid".
- Structural power materials would not only have to be mechanically certified, but also electrochemically too.
 - ⇒ Any mechanical/electrochemical interactions (e.g. mechanical cycling inducing damage that reduces the electrical performance) needs to be considered.
- Best addressed through developing predictive modelling
 - ⇒ Development of finite element models which can predict both mechanical and electrochemical behavior, and any coupling interactions.

Glass fibre separator

Future Challenges – Predictive Modelling Strategy

- Multifunctional structural element
- Provide a framework to support certification of structural power devices
- Couple electrical and mechanical models

Future Challenges – In-service Conditions

- Range of in-service requirement and conditions to which structural power materials could be exposed, and would be required to tolerate.
- These include

London

- ⇒ Cycling (both mechanical and electrical)
- \Rightarrow Temperature extremes,
- ⇒ Fire resistance
- ⇒ Machining/Finishing
- \Rightarrow Impact and Damage Tolerance.
- ⇒ Inspection/Repair/Disposal

Cyclic performance

Drilling damage

Potential Adoption Routes

- Structural power is still a very immature technology.
- Performance is too low to replace existing propulsion (aerospace and automotive)
- More reasonable target is to replace auxiliary power sources, such as to reduce the electrical load on main power sources.
- Automotive
 - ⇒ Utilize in secondary sources (stop/start battery, etc);
 - ⇒ Focus on panels and non-safety critical applications.
- Aerospace
 - ⇒ Cabin applications (benign temperature regime);
 - ⇒ Powering seat-back personal displays, etc;
 - ⇒ Local power sources for safety equipment;
 - \Rightarrow Systems and electronics boxes.
- Other Sectors
 - ⇒ Electric bicycles energy recovery, etc;
 - ⇒ Mobile electronics.

Volvo bootlid demonstrator from STORAGE project

Conclusions

- Structural power composites is an exciting emerging technology for transportation and portable electronics.
- Current performance c.f. conventional supercapacitor at device level (4.7Wh/kg & 4.1kW/kg)
 - \Rightarrow 3.2Wh/kg & 3.4kW/kg (semi-structural);
 - \Rightarrow 1.4Wh/kg & 1.1kW/kg (structural).
- Still considerable technical hurdles to be addressed, but the outlook is promising.
 - ⇒ Multifunctional Design
 - ⇒ Scale-up and Fabrication
 - \Rightarrow Encapsulation
 - ⇒ Certification and Predictive Modelling
 - ⇒ In-service Conditions
- Early adoption routes auxiliary applications and power sources (aircraft cabin)
- My personal view structural power, and the generic concept of truly multifunctional materials, is such an simple idea
 which will provide huge performance benefits and design freedom, it's clearly a case of when not if it is widely adopted.
- In 50 years time, we won't be using discrete monofunctional batteries, we will build structures from multifunctional materials with innate electrical energy storage.

Acknowledgements

Acknowledge the funding provided by the EPSRC Future Composites Research Manufacturing Hub (EP/P006701/1), the EPSRC Beyond Structural project (EP/P007465/1), the European Office of Aerospace Research and Development (IOE Grant FA9550-17-1-0251) and EU Clean Sky 2 (SORCERER Project #738085).

- Ex-researchers Habtom Asfaw, Guohui Zhang, & Kaan Bilge
- Collaborators University of Durham, University of Bristol, KTH (Sweden), Chalmers (Sweden), IMDEA (Spain)

