

11-16 AUGUST 2019

22nd International Conference on Composite Materials

PREDICTING THE CONSOLIDATION OF FABRIC-REINFORCED STRUCTURAL POWER COMPOSITES

M. Valkova^{1,2}, E. S. Greenhalgh¹, M. S. P. Shaffer², A. R. J. Kucernak² and D. B. Anthony^{1,2}.

¹ Department of Aeronautics, Imperial College London, UK; ² Department of Chemistry, Imperial College, London, UK

Imperial College London, UK www.imperial.ac.uk/composites-centre/ August 2019

Overview

Introduction

Why consolidation?

Experimental

• Woven reinforcements and compressibility characterisation.

Modelling

• Mono- and multi-layer reinforcement modelling approach.

Results

Predictions vs. observations; surface modifications.

Conclusions

Implications and future work.

Introduction

Introduction

- Goal of structural power composites (SPCs): achieve competitive energy and power densities while maintaining structural integrity.
- To date, most of the successfully demonstrated SPC devices employ a laminated construction^[1,2], combining woven fabric reinforcements (WFR) in a hybrid layup.

• Optimal consolidation of the reinforcements is key for both mechanical and electrochemical performance of

SPCs.

Motivation for current work

- 1) Reinforcement choice and/or surface modifications determine layup consolidation properties^[3], and hence, the attainable fibre volume fraction (FVF) and micro-/meso-structures.
 - Expect strong link between structure and SPC properties, as is the case for conventional composites^[4].
 - Ability to predict structure and properties will aid selection of reinforcements and processing specifications.
- 2) Need for predictive modelling to assist multifunctional device design and optimisation^[5].
 - Mechanical and electrochemical FEA relies on realistic geometric models as a starting point^[4].
 - Generation of accurate geometric models of WFRCs often involves a process modelling step.

Materials

Electrode: Chomarat C-WEAVE™ 200P 3K HS (C)

Separator: Gividi Fabrics srl 1086 (G)

Layups characterised:

	\
Monolayer	C , G
Monolithic multilayer	C ₂ , G ₂
Hybrid multilayer	CG, CGC

Introduction Experimental Modelling Results Conclusions

Experimental setup

11-16 AUGUST 2019

22nd International Conference

Modelling methodology

- Each fabric modelled as a meso-scale unit cell (UC).
- Average geometric parameters determined from optical microscopy.
- Yarns idealised as continuous, transversely-isotropic, with homogenised properties.
- Fabric compression response is highly non-linear^[6].
- FE sensitivity studies established that the transverse modulus of yarns (E_2) governs this response.

Modelling methodology

- Assumed bi-exponential evolution of E_2 with local FVF($V_{f,l}$): $E_2 = a \exp(b V_{f,l}) + c \exp(d V_{f,l})$
- $V_{f,I}$ calculated based on the element volume change, represented by the Jacobian (I):

$$V_{f,I} = V_{f,I,O} / J$$
 and $J = \det(F)$

where F is the deformation gradient and $V_{f,l,0}$ is the undisturbed FVF.

- Nonlinearity of E_2 implemented through a user subroutine (VUMAT).
- Monolayer models calibrated against measured compression responses.

Introduction > Experimental > Modelling > Results > Conclusions

Modelling methodology

- Inter-ply nesting is a key feature of fabric reinforced composites.
- Range of possible nesting configurations in multilayer fabric stacks, resulting in range of architectures.
- Limiting cases of minimum and maximum nesting of adjacent layers considered:

Modelling methodology

- Dissimilar geometry of C and G requires tessellation of UCs to construct a multilayer hybrid unit cell (hUC).
- To minimise computational domain while preserving periodicity, hUCs constructed using approximate fabric geometric parameters within measurement variability (1σ), resulting in a 1:5 tessellation ratio.
- Limiting cases of nesting considered for CGC (device) stack.

- Monolithic multilayer results indicate OP stacking results in greater structural homogeneity and higher FVF than IP.
- Difference between IP and OP model compaction responses greater than
 experimentally measured range, indicating only moderate nesting achieved
 in practice. Process variability, ply misalignment and shear as possible causes.

- IP vs. OP CGC hybrid model results suggest C-C nesting may still be transmitted through separator fabric G.
- In practice, experimental consolidation range displays only moderate inter-ply nesting.

- IP vs. OP CGC hybrid model results suggest C-C nesting may still be transmitted through separator fabric G.
- In practice, experimental consolidation range displays only moderate inter-ply nesting. Findings supported by optical microscopy:

- IP vs. OP CGC hybrid model results suggest C-C nesting may still be transmitted through separator fabric G.
- In practice, experimental consolidation range displays only moderate inter-ply nesting. Findings supported by optical microscopy:

- IP vs. OP CGC hybrid model results suggest C-C nesting may still be transmitted through separator fabric G.
- In practice, experimental consolidation range displays only moderate inter-ply nesting. Findings supported by optical microscopy:

• X-ray μCT: C-C nesting evidenced by through-thickness waviness of G ply.

• Through-thickness waviness features observed in X-ray µCT captured in 35° phase shift model.

• Through-thickness waviness features observed in X-ray µCT captured in 35° phase shift model.

Introduction > Experimental > Modelling > Results > Conclusions

- Fibre surface modifications often pursued as means to increase electrode surface area, e.g. carbon aerogel (CAG).
- CAG-modified carbon fibre fabric (C*) and associated device layup (C*GC*) display a marked decrease in compressibility in transverse compaction tests.

Introduction ight> Experimental ight> Modelling ight> Results ight> Conclusions

Conclusions

- Procedure for generation of meso-FE models of WFR SPCs established.
- Attainable FVF in SPCs dependent on selection of reinforcements and/or presence of surface modifications;
 additional limitations due to layup process and ply variability.
- 3D models of device meso-architecture to be used in further mechanical and electrochemical FEA.

Acknowledgments

- Researchers: Sang Nguyen, Francesca Pernice, Evgeny Senokos, Kalpana Balaskandan, Koon-Yang Lee, Matthew Santer
- Collaborators: Victor Quan, Natasha Shirshova, Alexander Bismarck, Bristol University, KTH (Sweden), Chalmers (Sweden), IMDEA (Spain)

EPSRC

Engineering and Physical Sciences Research Council

Beyond Structural (EP/P007465/1)

We gratefully acknowledge funding from

CIMComp (EP/P006701/1)

SORCERER (#738085)

